دانلود کتاب Zeta functions for two-dimensional shifts of finite type
by Jungchao Ban|
|
عنوان فارسی: توابع زتا برای یک شیفت کاری دو بعدی از نوع محدود |
دانلود کتاب
جزییات کتاب
ight)
ight)^{-1}$. The zeta function $zeta=prod_{n=1}^{infty} left(detleft(I-s^{n} au_{n}
ight)
ight)^{-1}$ in the $x$-direction is now a reciprocal of an infinite product of polynomials. The zeta function can be presented in the $y$-direction and in the coordinates of any unimodular transformation in $GL_{2}(mathbb{Z})$. Therefore, there exists a family of zeta functions that are meromorphic extensions of the same analytic function $zeta^{0}(s)$. The natural boundary of zeta functions is studied. The Taylor series for these zeta functions at the origin are equal with integer coefficients, yielding a family of identities, which are of interest in number theory. The method applies to thermodynamic zeta functions for the Ising model with finite range interactions



این کتاب رو مطالعه کردید؟ نظر شما چیست؟