جزییات کتاب
Degradation is apparent in all things and is fundamental to manufactured as well as natural objects. It is often described by the second law of thermodynamics where entropy, a measure of disorder, tends to increase with time in a closed system. Things age! This concise reference work brings together experts and key players engaged in the physics of degradation to present the background science, current thinking and developments in understanding, and give a detailed account of emerging issues across a selection of engineering applications. The work has been put together to equip the upper level undergraduate student, postgraduate student as well as the professional engineer and scientist in the importance of physics of degradation. The aim of the work is to bridge the gap between published textbooks on the fundamental science of degradation phenomena and published research on the engineering science of actual fabricated materials and devices. A history of the observation and understanding of physics of degradation is presented. The fundamentals and principles of thermodynamics and entropy are extensively discussed. This is the focus of this work with an extended chapter by Alec Feinberg on equilibrium thermodynamic damage and non-equilibrium thermodynamic damage. The work concludes with two particular technologies to give examples of areas of application. Read more... Abstract: Degradation is apparent in all things and is fundamental to manufactured as well as natural objects. It is often described by the second law of thermodynamics where entropy, a measure of disorder, tends to increase with time in a closed system. Things age! This concise reference work brings together experts and key players engaged in the physics of degradation to present the background science, current thinking and developments in understanding, and give a detailed account of emerging issues across a selection of engineering applications. The work has been put together to equip the upper level undergraduate student, postgraduate student as well as the professional engineer and scientist in the importance of physics of degradation. The aim of the work is to bridge the gap between published textbooks on the fundamental science of degradation phenomena and published research on the engineering science of actual fabricated materials and devices. A history of the observation and understanding of physics of degradation is presented. The fundamentals and principles of thermodynamics and entropy are extensively discussed. This is the focus of this work with an extended chapter by Alec Feinberg on equilibrium thermodynamic damage and non-equilibrium thermodynamic damage. The work concludes with two particular technologies to give examples of areas of application