جزییات کتاب
درس سیستم های کنترل غیرخطی (Nonlinear Control Systems) یکی از دروس مهم و اساسی رشته مهندسی کنترل در مقطع کارشناسی ارشد است و د این درس ابزارها و رویکردهای مربوط به تحلیل سیستم های دینامیکی غیرخطی و طراحی کنترل کننده برای این سیستم ها، مورد بررسی و مطالعه قرار می گیرند. در درس هایی که به بررسی، تحلیل و کنترل سیستم های خطی پرداخته می شود، آن قدر فرض های محدود کننده وجود دارند که حوزه کاربردی بسیار ناچیزی برای مباحث مطرح شده قابل تعریف است. در عمل، همه سیستم های واقعی غیرخطی هستند و دانش تحلیل و کنترل سیستم های دینامیکی غیر خطی، ابزاری است که ما را قادر به بررسی سیستم های واقعی می کند.
This text emphasizes classical methods and presents essential analytical tools and strategies for the construction and development of improved design methods in nonlinear control. It offers engineering procedures for the frequency domain, as well as solved examples for clear understanding of control applications in the industrial, electrical, process, manufacturing, and automotive industries. The authors discuss Properties of nonlinear systems, stability, linearization methods, operating modes and dynamic analysis methods, phase trajectories in dynamic analysis of nonlinear systems, and harmonic linearization in dynamic analysis of nonlinear control systems operating in stabilization mode.Properties of nonlinear systems, stability, linearization methods, operating modes and dynamic analysis methods, phase trajectories in dynamic analysis of nonlinear systems, harmonic linearization in dynamic analysis of nonlinear control systems operating in stabilization mode, harmonic linearization in dynamic analysis of nonlinear control systems in tracking mode of operation, performance estimation of nonlinear control system transient responses, describing function method in fuzzy control systems. Appendices: harmonic linearization, Popov diagrams.Table of Contents:Series IntroductionPrefaceProperties of Nonlinear SystemsProblems in the Theory of Nonlinear SystemsBasic Mathematical and Structural Models of Nonlinear SystemsBasic Specific Properties of Nonlinear SystemsStability and Equilibrium StatesBasic Properties of Nonlinear FunctionsTypical Nonlinear ElementsNonlinear Elements with Single-Valued Continuous CharacteristicsNonlinear Elements with Single-Valued Discontinuous CharacteristicsNonlinear Elements with Double-Valued CharacteristicsNonlinear Elements with Multi-Valued CharacteristicsAtypical (Non-Standard) Nonlinear ElementsBasic Nonlinearity ClassesConclusionStabilityEquilibrium States and Concepts of StabilityStability of a Nonlinear System Based on Stability of the Linearized SystemLyapunov StabilityDefinitions of StabilityLyapunov Direct MethodAbsolute StabilityAbsolute Stability of Equilibrium States of an Unforced System (Popov Criterion)Geometrical Interpretation of Popov CriterionAbsolute Stability with Unstable Linear PartExamples of Determining Absolute Stability by Using Popov PlotAbsolute Stability of an Unforced System with Time-Varying Nonlinear CharacteristicAbsolute Stability of Forced Nonlinear SystemsAbsolute Stability of Forced Nonlinear Systems with an Unstable Linear PartConclusionLinearization MethodsGraphical Linearization MethodsAlgebraic LinearizationAnalytical Linearization Method (Linearization in the Vicinity of the Operating Point)Evaluation of Linearization Coefficients by Least-Squares MethodHarmonic LinearizationDescribing FunctionStatistical LinearizationCombined (Dual-Input) Describing FunctionsConclusionOperating Modes and Dynamic Analysis MethodsOperating Modes of Nonlinear Control SystemsSelf-OscillationsForced OscillationsEffects of High-Frequency Signal---DitherMethods of Dynamic Analysis of Nonlinear SystemsPhase Trajectories in Dynamic Analysis of Nonlinear SystemsPhase PlanePhase Trajectories of Linear SystemsPhase Trajectories of Nonlinear SystemsMethods of Defining Phase TrajectoriesEstimation of Stability and Performance by Means of Phase TrajectoriesExamples of Application of Various Methods to Obtain Phase TrajectoriesConclusionHarmonic Linearization in Dynamic Analysis of Nonlinear Control Systems Operating in Stabilization ModeDescribing Function in Dynamic Analysis of Unforced Nonlinear Control SystemsAnalysis of Symmetrical Self-OscillationsAnalytical Stability Criterion of Self-OscillationsDetermination of Symmetrical Self-OscillationsAsymmetrical Self-Oscillations---Systems with Asymmetrical Nonlinear Static CharacteristicAsymmetrical Self-Oscillations---Systems with Symmetrical Nonlinear CharacteristicReliability of the Describing Function MethodForced Oscillations of Nonlinear SystemsSymmetrical Forced OscillationsAsymmetrical Forced OscillationsResonance JumpConclusionHarmonic Linearization in Dynamic Analysis of Nonlinear Control Systems in Tracking Mode of OperationVibrational Linearization with Self-OscillationsDynamic Analysis of Nonlinear Control Systems in Tracking Mode of Operation with Forced OscillationsPerformance Estimation of Nonlinear Control System Transient ResponsesDetermining Symmetrical Transient Responses Near Periodic SolutionsPerformance Diagrams of Nonlinear System Transient ResponsesDescribing Function Method in Fuzzy Control SystemsBasics of Fuzzy LogicIntroductionFuzzy Sets FundamentalsCrisp and Fuzzy Sets and Their Membership FunctionsFuzzy Set Parameter PresentationBasic Operation on Fuzzy Sets in Control SystemsLanguage Variable OperatorsGeneral Language Variable OperatorsFuzzy RelationsFuzzy Relational EquationsUse of Language Variables and Language ExpressionsFuzzificationLanguage Description of the System by Means of IF-THEN RulesLanguage Description of the System with Fuzzy Decision MakingDefuzzification or Fuzzy Set Adjustment (Calculating Crisp Output Values)Describing Function of SISO Fuzzy ElementStability Analysis of a Fuzzy Control SystemInfluence of Fuzzy Regulator on Resonance JumpAppendix A Harmonic LinearizationAppendix B Popov DiagramsBibliographyIndex
درباره نویسنده
زوران وولیچ (کرواتی: Zoran Vulić; زادهٔ ۴ اکتبر ۱۹۶۱(1961-10-04)) بازیکن فوتبال بازنشستهٔ اهل کرواسی است.