جزییات کتاب
Contents......Page 7Preface......Page 9Acknowledgments......Page 13Abstract......Page 15Nomenclature......Page 16Subscripts......Page 181. Introduction and Glossary......Page 201.1. Closed Two-Phase Thermosyphon-Type Heat Pipe......Page 231.3. Heat Pipe......Page 241.4. Passive (or Naturally Driven) Flow and Heat Transfer Devices......Page 251.6. Heat Pipe Heat Exchanger......Page 261.7. Splashing......Page 281.10. Smacking......Page 301.11. Complexity......Page 312. Heat Transfer Coefficients and Maximum Heat Transfer Rate......Page 332.1. Ammonia-Charged Water Heated and Cooled Closed Thermosyphon......Page 352.2. Ammonia-Charged Steam Heated and Air-Cooled Closed Thermosyphon......Page 372.3. Heat Transfer Coefficients and Maximum Heat Transfer Rate for R123 and Butane......Page 443.1. Water-Cooled Nuclear Reactor Cooling and Heat Removal System......Page 493.1.1. Background Information......Page 503.1.3. Natural Circulation Loops......Page 553.1.4. Flow Instabilities......Page 583.1.5. Flow Pattern Characterisation......Page 613.1.7. Theoretical Simulation Model......Page 623.1.7.1. Thermal-hydraulic Theoretical Simulation Assumptions......Page 633.1.7.3. Conservation of Mass......Page 663.1.7.4. Conservation of Energy......Page 673.1.7.5. Conservation of Momentum......Page 713.1.8. Numerical Simulation Model Computer-Solution Program Algorithm......Page 743.1.8. Theoretical and Experimental Results......Page 833.2. Entirely-Passive Reactor Cavity Cooling System (RCCS)......Page 843.3. Entirely-Passive Spent and Used Fuel Tank Cooling System......Page 893.5. Steady State Natural Circulation Nuclear Reactor Cooling System......Page 914. Energy Saving Using Heat Pipe Heat Recovery Heat Exchangers......Page 964.1. Milk Spray Drying......Page 1014.2 Mini Food Drier......Page 1034.3. Heat Pump Drying......Page 1074.4. Acid Pickling Process Plant......Page 1105. Pulsating Heat Pipes......Page 1115.1. Theory of Operation......Page 1145.1.1. Conservation of Mass......Page 1155.1.3. Conservation of Momentum......Page 1175.1.5. Equation of State......Page 1185.2. Numerical Solution Procedure......Page 1195.3. Example......Page 1206.1.1. Drinking Bird Water Pump......Page 1236.1.2. Surface Tension Driven Water Pump......Page 1266.1.3. Natural Air-Circulation Water Pump......Page 1306.1.4. Open Oscillating Heat Pipe Water Pump......Page 1336.2. Night-Sky Cooling and Day-Time Solar Heating System......Page 1346.3.1. Separated Thermosyphon Heat Pipe......Page 1486.3.2. Bent (BT) and Looped Closed Thermosyphons (CLTs)......Page 1566.3.3. Plate and Thermosyphon Heat Transfer Comparison......Page 1626.4. Supercritical Closed Loop Thermosyphon Heat Transfer......Page 165References......Page 167Abstract......Page 175Greek Symbols......Page 1761. Challenges of High Heat Flux Thermal Management......Page 1772. Advanced Wick Structures Capable of High Heat Flux Phase Change......Page 1792.1. Bi-Dispersed Porous Wick Structures......Page 1802.2. Microfabricated Mono Wick Structures......Page 1822.3. Multiscale Nanoporous Wick Structures......Page 1883. High Heat Flux Phase Change Modes and Transitions......Page 1924.1. Equilibrium of Heat and Mass Transport in Wick Structures......Page 1954.2. Wick Geometrical Effect......Page 1984.3. Liquid Properties Contribution......Page 2024.4. Nanostructure Enhanced Phase Change......Page 2065. Dryout at High Heat Flux......Page 209References......Page 212Abstract......Page 2171. Introduction......Page 2182. Heat Pipes and Thermosyphons as Thermal Management Elements. Field for Improvement......Page 2213.1. Increasing Heat Removal Efficiency of Thermosyphons under Mechanical Stress......Page 2233.2. Extending Service Life of Thermosyphons with Horizontal Condensation Surface......Page 2263.3. Gravitational Heat Pipe with Threaded Capillary Structure......Page 2283.4. Improved Designs of Heat Pipes with a Wick for the Modernized Electronic Modules......Page 2293.5. Improved Miniature Heat Pipes......Page 2303.7. Improving the Design of Gas-Regulated Heat Pipes......Page 2323.8. Improving the Design of Loop Heat Pipes......Page 2334.1. Thermal Management in Multi-Channel Secondary Power Supply Units in the Basic Supporting Structures of the Second Level with Air Cooling......Page 2344.2. Thermal Management for Multi-Layer Ceramic Switching Circuits in the Basic Supporting Structures of the Second Level with Water Cooling......Page 2354.3. Improved Manifold Heat Pipe for Basic Second Level Supporting Structures in the Form of Removable Electronic Modules with Water Cooling......Page 2394.4. Basic Second-Level Supporting Structure in the Form of a Removable Unit with a Metal Plate with Built-in Evaporation Minichannels and Water Cooling......Page 2404.5. Using HPs in Third-Level Basic Support Structures with Water Cooling......Page 2415. Thermal Management of Mobile Infrared Devices Based on Two-Phase Technologies......Page 2445.1. Thermal Management of Photosensitive Devices for Control Systems of Infrared Electronics Using Cryocooling......Page 2455.2. Thermal Management of Infrared Photosensitive Devices of Medium-Temperature Range......Page 2476.1. Thermal Management Using Two-Phase Technology and Thermoelectric Coolers for Advanced Microlaser Devices......Page 2496.2. Thermal Management Using Two-Phase Technology and Thermoelectric Coolers for Advanced High-Power Laser Devices......Page 2516.3. Thermal Management Using Heat Pipes and Large-Size Thermoelectric Coolers......Page 2526.4. Improving TEC as Elements for Combined Thermal Management Devices for Electronics......Page 2546.5. Using Gravitational Heat Pipes for Thermal Management of High-Power LED Modules......Page 2557.1. Technological Solutions for Manufacturing Flat Finned Heat Pipes......Page 2577.4. New Technological Solutions for Sealing Titanium Heat Pipes......Page 2597.5. New Technological Solutions for Manufacturing Capillary Structures of Miniature Heat Pipes......Page 260Conclusion......Page 261References......Page 263Abstract......Page 2691. Introduction......Page 2702.1. Working Fluid Physical Properties......Page 2762.2. Binary Mixtures Phase Diagram......Page 2783. Experimental Setup......Page 2814. Data Reduction and Error Analysis......Page 2835.1. Analysis of Oscillation Characteristics and Heat-Transfer Mechanisms......Page 2845.2. Characteristics of the Local Dryout......Page 2905.3. Variation Rules of PHP thermal Resistance to the Change of Heat Input and FRs......Page 2936. Working Fluids and Their Properties on the PHP Performance......Page 2966.2. Oscillation Operation and Latent Heat of Vaporization (LHV)......Page 2976.3. Comparisons between Different Filling Ratios (FRs)......Page 2986.4. Comparison between Different Working Fluids......Page 3006.5. Thermal Resistance Comparison for the Working Fluids at Different Filling Ratios......Page 3017.1. Water-Based Binary Zeotropes in PHP......Page 3037.1.1. Small Filling Ratios (35%, 45%) and Medium Filling Ratio (55%)......Page 3047.1.2. Large Filling Ratios (62%, 70%)......Page 3087.1.3. Characteristics of Different Mixtures at Certain Mixing Ratio (FR = 62%)......Page 3117.2. The PHP with Methanol-Ethanol Mixture......Page 313Conclusions: PHP with Binary Mixtures......Page 315Conclusion......Page 316References......Page 317Abstract......Page 323Introduction......Page 3241.1. Power Spectral Density......Page 3271.2. Correlation Dimension......Page 3281.3. Autocorrelation Function......Page 3291.4. Lyapunov Exponent......Page 3302. Volume of Fluid (VOF) Method and Governing Equations......Page 3313. Simple Two-Dimensional Pulsating Heat Pipe......Page 3343.1. Volume Fractions and Time Series......Page 3353.2. Correlation Dimension......Page 3443.3. Power Spectral Density......Page 3453.4. Lyapunov Exponent......Page 3463.5. Autocorrelation Function......Page 3474.1. Volume Fractions......Page 3484.2. Non-Linear Temperature Oscillations......Page 3524.3. Power Spectral Density......Page 3534.4. Correlation Dimension and Autocorrelation Function......Page 3544.5. Thermal behavior......Page 3555. Three-Dimensional Pulsating Heat Pipe......Page 3575.1. Validation......Page 3595.2. Volume Fractions......Page 3605.3. Spectral Analysis of Time Series......Page 3665.4. Correlation Dimension......Page 3695.5. Autocorrelation Function......Page 3705.6. Lyapunov Exponent......Page 3715.7. Phase Space Reconstruction......Page 3725.8. Thermal Performance......Page 374Conclusion......Page 375References......Page 376Abstract......Page 379Introduction......Page 380Heat Pipes of Various Shapes......Page 385Heat Sink-Heat Pipe Thermal Module (HSHPTM) Software......Page 390HSHPTM Software Applications......Page 395Conclusion......Page 403References......Page 404Abstract......Page 409Heat Pipe Working Fluid/Envelope/Wick Compatibility – Life Tests......Page 410Non-Condensable Gas Generation......Page 411Corrosion......Page 412Review of Previous Life Tests......Page 413Elements......Page 414Organic Working Fluids......Page 415Titanium/Water and Monel/Water Life Tests......Page 419Life Test Setup......Page 421Life Tests......Page 423Heat Pipe Sectioning and Analysis......Page 424Titanium-Water Heat Pipe Cross-Sections......Page 425Monel-Water Heat Pipe Cross-Sections......Page 426Titanium-Halide Heat Pipe Cross-Sections......Page 427Hastelloy C-Series Superalloy-Halide Cross-Sections......Page 428Chemical Analysis of Working Fluids......Page 430Conclusion......Page 432References......Page 433Abstract......Page 439Introduction to Variable Conductance Heat Pipes......Page 440Cold-Biased Reservoirs......Page 441Warm-Reservoir Variable Conductance Heat Pipes......Page 442Hot Reservoir VCHP with Active Control and Non-Integrated Configuration......Page 443Warm-Reservoir VCHPs for High Altitude Balloons......Page 446Testing Results......Page 448Introduction to Pressure Controlled Heat Pipes......Page 450Isothermal Furnace Liners......Page 451Early PCHP Work......Page 452PCHPS with Variable Reservoir Volumes......Page 453PCHPS for Precise Temperature Control in Microgravity......Page 454Modifications for Operation in Microgravity......Page 455Fabrication and Testing of PCHPs Designed for Operation in Microgravity......Page 456PCHPS with Both NCG Addition and Reservoir Volume Variation......Page 458System Operation......Page 461Regolith PCHP Design Constraints......Page 463Fabrication and Testing of the Regolith Extraction System......Page 464Conclusion......Page 468References......Page 469Abstract......Page 473Introduction......Page 474Flow Regimes in Pool Boiling......Page 475Flow Regimes in 2-Phase Closed Thermosyphon......Page 477Visualization of Flow Patterns in Two-Phase Closed Thermosyphon......Page 483Loop Heat Pipes......Page 4862 Phase Forced Convection Flows......Page 488Vapour Chamber......Page 491Proposed Future Studies......Page 493References......Page 494Index......Page 499Blank Page......Page 2