جزییات کتاب
This brief explores the pivotal realm of droplet cavitation, a subject of great significance for enhancing fuel atomization and improving various industrial processes. The authors employ high-speed photography experiments, analyze bubble dynamics equations, and utilize numerical simulations to explore the dynamic behavior of cavitation bubbles and droplets. The book analyzes the entire lifecycle of cavitation bubbles, their interactions with different liquid droplets, and the key parameters governing their oscillation and collapse and sheds light on the collapse mechanisms and shock wave propagation influenced by liquid droplets. Additionally, it investigates the dynamics of droplet spattering by categorizing spatter patterns under diverse conditions, discusses the critical stability of droplet surfaces, and reveals the mechanisms by which cavitation bubble collapses induce droplet breakage. Taking vapor bubbles and diesel droplets as examples, the dynamic characteristics of specific droplets containing bubbles are also analyzed. This book offers an in-depth understanding of these phenomena with practical implications for a wide range of industrial applications and is a useful tool for researchers and engineers working in the fields of fluid dynamics, combustion engineering, and atomization processes.