جزییات کتاب
تانسور عنصری هندسی است که در ریاضی و فیزیک به منظور گسترش مفاهیم اسکالرها، بردارها و ماتریسها به ابعاد بالاتر معرفی میشوند. تانسورها اولین بار توسط تولیو لوی-چیویتا و گرگریو ریتچی-کورباسترو ابداع شدند. در واقع کار آنها ادامه کارهای برنهارت ریمان و الوین برونو کریستوفل و دیگران در حساب دیفرانسیل مطلق بود.
This new edition is intended for third and fourth year undergraduates in Engineering, Physics, Mathematics, and the Applied Sciences, and can serve as a springboard for further work in Continuum Mechanics or General Relativity. Starting from a basic knowledge of calculus and matrix algebra, together with fundamental ideas from mechanics and geometry, the text gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics. The mathematics of tensor analysis is introduced in well-separated stages: the concept of a tensor as an operator; the representation of a tensor in terms of its Cartesian components; the components of a tensor relative to a general basis, tensor notation, and finally, tensor calculus. The physical interpretation and application of vectors and tensors are stressed throughout. Though concise, the text is written in an informal, non-intimidating style enhanced by worked-out problems and a meaningful variety of exercises. The new edition includes more exercises, especially at the end of chapter IV. Furthermore, the author has appended a section on Differential Geometry, the essential mathematical tool in the study of the 2-dimensional structural shells and 4-dimensional general relativity.