جزییات کتاب
New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters. ? Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectures together with the concepts of modularity and nesting ? Examines stability and relaxation within RNNs ? Presents on-line learning algorithms for nonlinear adaptive filters and introduces new paradigms which exploit the concepts of a priori and a posteriori errors, data-reusing adaptation, and normalisation ? Studies convergence and stability of on-line learning algorithms based upon optimisation techniques such as contraction mapping and fixed point iteration ? Describes strategies for the exploitation of inherent relationships between parameters in RNNs ? Discusses practical issues such as predictability and nonlinearity detecting and includes several practical applications in areas such as air pollutant modelling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications. VISIT OUR COMMUNICATIONS TECHNOLOGY WEBSITE! http://www.wiley.co.uk/commstech/ VISIT OUR WEB PAGE! http://www.wiley.co.uk/Content: Chapter 1 Introduction (pages 1–8): Chapter 2 Fundamentals (pages 9–29): Chapter 3 Network Architectures for Prediction (pages 31–46): Chapter 4 Activation Functions Used in Neural Networks (pages 47–68): Chapter 5 Recurrent Neural Networks Architectures (pages 69–89): Chapter 6 Neural Networks as Nonlinear Adaptive Filters (pages 91–114): Chapter 7 Stability Issues in RNN Architectures (pages 115–133): Chapter 8 Data?Reusing Adaptive Learning Algorithms (pages 135–148): Chapter 9 A Class of Normalised Algorithms for Online Training of Recurrent Neural Networks (pages 149–160): Chapter 10 Convergence of Online Learning Algorithms in Neural Networks (pages 161–169): Chapter 11 Some Practical Considerations of Predictability and Learning Algorithms for Various Signals (pages 171–198): Chapter 12 Exploiting Inherent Relationships Between Parameters in Recurrent Neural Networks (pages 199–219):