جزییات کتاب
Dieses Lehrbuch bringt in einem stufenweisen Aufbau, ausgehend von der Mittelwerteigenschaft harmonischer Funktionen, über die Perronsche Methode zur Lösung des Dirichletproblems für die Laplacegleichung und den Kelloggschen Satz über das Randverhalten von Lösungen der Poissongleichung, eine Darstellung der klassischen Theorie linearer elliptischer Differentialgleichungen 2. Ordnung. Der Zusammenhang mit schwachen Lösungen solcher Gleichungen wird hergestellt. Hervorzuheben sind zahlreiche neue und vereinfachte Beweise, so für die Symmetrie und die Abschätzung der Greenschen Funktion und ihrer Ableitungen. Der sparsame und effiziente Einsatz von Hilfsmitteln ermöglicht den Studierenden das Eindringen in dieses Gebiet bereits ab dem 2. Studienjahr. Die Beschreibung von Beweisvarianten erleichtert es dem Dozenten, für Vorlesung oder Seminar eine Auswahl zu treffen. Eine Besonderheit dieses Buches bilden die vielen historischen Bezüge und Literaturverweise, die auch dem Fachmann manches Neue bieten werden.