Content: Preface, Pages v-vi, M.J. Hinton, P.D. Soden, A.S. KaddourAbout the editors, Page viiChapter 1.1 - The world-wide failure exercise: Its origin, concept and content, Pages 2-28, M.J. Hinton, A.S. Kaddour, P.D. SodenChapter 2.1 - Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates, Pages 30-51, P.D. Soden, M.J. Hinton, A.S. KaddourChapter 2.2 - Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: Failure exercise benchmark data, Pages 52-96, P.D. Soden, M.J. Hinton, A.S. KaddourChapter 3.1 - Prediction of composite laminate fracture: Micromechanics and progressive fracture, Pages 98-120, P.K. Gotsis, C.C. Chamis, L. MinnetyanChapter 3.2 - Failure criteria for use in the design environment, Pages 121-139, G.C. EckoldChapter 3.3 - Stress-based Grant-Sanders method for predicting failure of composite laminates, Pages 140-156, E.C. EdgeChapter 3.4 - Predicting transverse crack formation in cross-ply laminates, Pages 157-178, L.N. McCartneyChapter 3.5 - Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates, Pages 179-218, L.J. Hart-SmithChapter 3.6 - Predictions of a generalized maximum-shear-stress failure criterion for certain fibrous composite laminates, Pages 219-263, L.J. Hart-SmithChapter 3.7 - Failure analysis of FRP laminates by means of physically based phenomenological models, Pages 264-297, A. Puck, H. SchürmannChapter 3.8 - Prediction of laminate failure with the Rotem failure criterion, Pages 298-315, A. RotemChapter 3.9 - Prediction of failure envelopes and stress/strain behavior of composite laminates, Pages 316-333, C.T. Sun, Jianxin TaoChapter 3.10 - A progressive quadratic failure criterion for a laminate, Pages 334-352, Kuo-Shih Liu, Stephen W. TsaiChapter 3.11 - A strain-energy based failure criterion for non-linear analysis of composite laminates subjected to biaxial loading, Pages 353-378, William E. Wolfe, Tarunjit S. ButaliaChapter 3.12 - The strength of multilayered composites under a plane-stress state, Pages 379-401, Peter A. Zinoviev, Sergei V. Grigoriev, Olga V. Lebedeva, Ludmilla P. TairovaChapter 3.13 - Predicting the nonlinear response and progressive failure of composite laminates, Pages 402-428, Travis A. Bogetti, Christopher P.R. Hoppel, Vasyl M. Harik, James F. Newill, Bruce P. BurnsChapter 3.14 - The predictive capability of failure mode concept-based strength criteria for multidirectional laminates, Pages 429-489, R.G. Cuntze, A. FreundChapter 3.15 - Composite laminate failure analysis using multicontinuum theory, Pages 490-517, J. Steven Mayes, Andrew C. HansenChapter 3.16 - A bridging model prediction of the ultimate strength of composite laminates subjected to biaxial loads, Pages 518-596, Zheng-Ming HuangChapter 3.17 - Expanding the capabilities of the Ten-Percent Rule for predicting the strength of fibre-polymer composites, Pages 597-642, L.J. Hart-SmithChapter 4.1 - A comparative study of failure theories and predictions for fibre polymer composite laminates: Part (A), Pages 644-701, A.S. Kaddour, M.J. Hinton, P.D. SodenChapter 5.1 - Application of progressive fracture analysis for predicting failure envelopes and stress-strain behaviors of composite laminates: A comparison with experimental results, Pages 703-725, P.K. Gotsis, C.C. Chamis, L. MinnetyanChapter 5.2 - Failure criteria for use in the design environment, Pages 726-738, G.C. EckoldChapter 5.3 - A comparison of theory and experiment for the stress-based Grant-Sanders method, Pages 739-769, E.C. EdgeChapter 5.4 - Comparison between theories and test data concerning the strength of various fibre-polymer composites, Pages 770-809, L.J. Hart-SmithChapter 5.5 - Prediction of ply crack formation and failure in laminates, Pages 810-831, L.N. McCartneyChapter 5.6 - Failure analysis of FRP laminates by means of physically based phenomenological models, Pages 832-876, A. Puck, H. SchürmannChapter 5.7 - The Rotem failure criterion: Theory and practice, Pages 877-889, A. RotenChapter 5.8 - The prediction of failure envelopes and stress/strain behavior of composite laminates: Comparison with experimental results, Pages 890-902, C.T. Sun, J. Tao, A.S. KaddourChapter 5.9 - A progressive quadratic failure criterion, part B, Pages 903-921, Akira Kuraishi, Stephen W. Tsai, Kevin K.S. LiuChapter 5.10 - A strain-energy-based non-linear failure criterion: Comparison of numerical predictions and experimental observations for symmetric composite laminates, Pages 922-942, Tarunjit S. Butalia, William E. WolfeChapter 5.11 - A coupled analysis of experimental and theoretical results on the deformation and failure of composite laminates under a state of plane stress, Pages 943-960, Peter A. Zinoviev, Olga V. Lebedeva, Ludmilla P. TairovaChapter 5.12 - Predicting the nonlinear response and failure of composite laminates: Correlation with experimental results, Pages 961-975, Travis A. Bogetti, Christopher P.R. Hoppel, Vasyl M. Harik, James F. Newill, Bruce P. BurnsChapter 5.13 - The predictive capability of failure mode concept-based strength criteria for multi-directional laminates—Part B, Pages 976-1025, R.G. CuntzeChapter 5.14 - A comparison of multicontinuum theory based failure simulation with experimental results, Pages 1026-1044, J. Steven Mayes, Andrew C. HansenChapter 5.15 - Correlation of the bridging model predictions of the biaxial failure strengths of fibrous laminates with experiments, Pages 1045-1071, Zheng-Ming HuangChapter 6.1 - Predictive capabilities of nineteen failure theories and design methodologies for polymer composite laminates. Part B: Comparison with experiments, Pages 1073-1221, A.S. Kaddour, M.J. Hinton, P.D. SodenChapter 7.1 - Recommendations for designers and researchers resulting from the world-wide failure exercise, Pages 1223-1251, P.D. Soden, A.S. Kaddour, M.J. HintonIndex, Pages 1253-1255